
Faced with renewable energy requirements and carbon dioxide (CO2) reduction goals and mandates, utilities with aging coal-fired power plants or industrial hydrogen producers have had few choices other than to plan their plants’ retirements. Carbon capture provides an opportunity for these facilities to support decarbonization goals, generate lower carbon intensity power and reinvent their purpose by generating revenue through the capture of carbon.
Carbon capture technologies make it possible to remove CO2 from plant emissions. Existing power plants retrofitted, and new plants outfitted with carbon capture systems have the potential to continue supporting jobs in their communities and extending their operating lives by a decade or more.
When installing carbon capture systems, utilities must consider how they will dispose of and benefit from the large amounts of captured CO2. Currently, there are two predominant options. One is geological sequestration, which involves injecting the CO2 into very large underground geological formations for permanent storage and sequestration. That means disposing of CO2 as a waste product, which requires costly infrastructure and permitting, along with overcoming potential public opposition. This option is highly location-dependent, likely requiring a facility to be near the required geologic formation or a CO2 transport pipeline to remain economically feasible. Leveraging existing or new pipeline networks for the transport of CO2 is a potential transportation avenue. Securing permits for new CO2 pipelines, especially interstate pipelines, has thus far been challenging but pipeline development continues to progress and advance.
Another option is to sell the CO2 to the oil industry for enhanced oil recovery (EOR). Oil companies utilizing CO2 for EOR are typically willing to pay for the CO2, since they currently rely on natural CO2 sources found underground. Captured CO2 can be used to replace and supplement these resources. The potential supply of CO2, however, greatly exceeds likely demand from EOR utilization. This option is also highly dependent on the proximity of the plant to CO2 pipelines or oil fields with sufficient capacity to transport the captured gas.
Does the installation of a carbon capture system make economic sense? This is the question a growing number of utility and power producers are asking, and projects in development are expected to provide the answer.